Structural modeling of sequence specificity by an autoantibody against single-stranded DNA.
نویسندگان
چکیده
11F8 is a sequence-specific pathogenic anti-single-stranded (ss)DNA autoantibody isolated from a lupus prone mouse. Site-directed mutagenesis of 11F8 has shown that six binding site residues (R31VH, W33VH, L97VH, R98VH, Y100VH, and Y32VL) contribute 80% of the free energy for complex formation. Mutagenesis results along with intermolecular distances obtained from fluorescence resonance energy transfer were implemented here as restraints to model docking between 11F8 and the sequence-specific ssDNA. The model of the complex suggests that aromatic stacking and two sets of bidentate hydrogen bonds between binding site arginine residues (R31VH and R96VH) and loop nucleotides provide the molecular basis for high affinity and specificity. In part, 11F8 utilizes the same ssDNA binding motif of Y32VL, H91VL, and an aromatic residue in the third complementarity-determining region to recognize thymine-rich sequences as do two anti-ssDNA autoantibodies crystallized in complex with thymine. R31SVH is a dominant somatic mutation found in the J558 germline sequence that is implicated in 11F8 sequence specificity. A model of the mutant R31S11F8.ssDNA complex suggests that different interface contacts occur when serine replaces arginine 31 at the binding site. The modeled contacts between the R31S11F8 mutant and thymine are closely related to those observed in other anti-ssDNA binding antibodies, while we find additional contacts between 11F8 and ssDNA that involve amino acids not utilized by the other antibodies. These data-driven 11F8.ssDNA models provide testable hypotheses concerning interactions that mediate sequence specificity in 11F8 and the effects of somatic mutation on ssDNA recognition.
منابع مشابه
Role of conformational dynamics in sequence-specific autoantibody*ssDNA recognition.
11F8 is a sequence-specific monoclonal anti-ssDNA autoantibody isolated from a lupus prone mouse that forms pathogenic complexes with ssDNA, resulting in kidney damage. Prior studies show that specificity is mediated by a somatic mutation from serine at (31)V(H) to arginine. Reversion back to serine in 11F8 resulted in >30-fold decrease in affinity and altered thermodynamic and kinetic paramete...
متن کاملSpecificity and kinetics defining the interaction between a murine monoclonal autoantibody and DNA.
Interactions between a murine monoclonal anti-DNA autoantibody (BV17-45) and DNA were examined by direct binding and competitive radioimmunoassays. Binding isotherms constructed by titration of purified BV17-45 with a series of distinct 32P-labeled double-stranded DNA ([32P]dsDNA) fragments were super-impossible, suggesting: 1) BV17-45/[32P]dsDNA binding is independent of dsDNA size using fragm...
متن کاملThermodynamic basis for sequence-specific recognition of ssDNA by an autoantibody.
11F8 is a sequence-specific DNA binding monoclonal autoantibody previously isolated from an autoimmune lupus-prone mouse [Stevens, S. Y., and Glick, G. D. (1999) Biochemistry 38, 560-568]. This antibody, like many other lupus anti-DNAs, localizes to kidney tissue and eventually leads to renal damage through a process that first involves the binding of DNA antigens. A series of experiments were ...
متن کاملChallenges to Design and Develop of DNA Aptamers for Protein Targets. I. Optimization of Asymmetric PCR for Generation of a Single Stranded DNA Library
Aptamers, or single stranded oligonucleotides, are produced by systematic evolution of ligands by exponential enrichment, abbreviated as SELEX. In the amplification and regeneration step of SELEX technique, dsDNA is conversed to ssDNA. Asymmetric PCR is one of the methods used for the generation of ssDNA. The purpose of this study was to design a random DNA library for selection of aptamers wit...
متن کاملHigh Interaction Variability of the Bivalve-Killing Dinoflagellate Heterocapsa circularisquama Strains and Their Single-Stranded RNA Virus HcRNAV Isolates
HcRNAV is a single-stranded RNA (ssRNA) virus that specifically infects the bivalve-killing dinoflagellate, Heterocapsa circularisquama. HcRNAV strains are grouped into 2 types (UA and CY), based on intra-species host specificity and the amino acid sequence of the major capsid protein (MCP). In the present study, we report the isolation of novel HcRNAV clones (n=51) lytic to the H. circularisqu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 46 23 شماره
صفحات -
تاریخ انتشار 2007